Как сделать частотный анализ в excel?

Гистограмма распределения в MS EXCEL

Гистограмма распределения — это инструмент, позволяющий визуально оценить величину и характер разброса данных. Создадим гистограмму для непрерывной случайной величины с помощью встроенных средств MS EXCEL из надстройки Пакет анализа и в ручную с помощью функции ЧАСТОТА() и диаграммы.

Гистограмма (frequency histogram) – это столбиковая диаграмма MS EXCEL, в каждый столбик представляет собой интервал значений (корзину, карман, class interval, bin, cell), а его высота пропорциональна количеству значений в ней (частоте наблюдений).

Гистограмма поможет визуально оценить распределение набора данных, если:

  • в наборе данных как минимум 50 значений;
  • ширина интервалов одинакова.

Построим гистограмму для набора данных, в котором содержатся значения непрерывной случайной величины. Набор данных (50 значений), а также рассмотренные примеры, можно взять на листе Гистограмма AT в файле примера. Данные содержатся в диапазоне А8:А57.

Примечание: Для удобства написания формул для диапазона А8:А57 создан Именованный диапазон Исходные_данные.

Построение гистограммы с помощью надстройки Пакет анализа

Вызвав диалоговое окно надстройки Пакет анализа, выберите пункт Гистограмма и нажмите ОК.

В появившемся окне необходимо как минимум указать: входной интервал и левую верхнюю ячейку выходного интервала. После нажатия кнопки ОК будут:

  • автоматически рассчитаны интервалы значений (карманы);
  • подсчитано количество значений из указанного массива данных, попадающих в каждый интервал (построена таблица частот);
  • если поставлена галочка напротив пункта Вывод графика, то вместе с таблицей частот будет выведена гистограмма.


Перед тем как анализировать полученный результат — отсортируйте исходный массив данных.

Как видно из рисунка, первый интервал включает только одно минимальное значение 113 (точнее, включены все значения меньшие или равные минимальному). Если бы в массиве было 2 или более значения 113, то в первый интервал попало бы соответствующее количество чисел (2 или более).

Второй интервал (отмечен на картинке серым) включает значения больше 113 и меньше или равные 216,428571428571. Можно проверить, что таких значений 11. Предпоследний интервал, от 630,142857142857 (не включая) до 733,571428571429 (включая) содержит 0 значений, т.к. в этом диапазоне значений нет. Последний интервал (со странным названием Еще) содержит значения больше 733,571428571429 (не включая). Таких значений всего одно — максимальное значение в массиве (837).

Размеры карманов одинаковы и равны 103,428571428571. Это значение можно получить так:
=(МАКС(Исходные_данные)-МИН(Исходные_данные))/7
где Исходные_данные – именованный диапазон, содержащий наши данные.

Почему 7? Дело в том, что количество интервалов гистограммы (карманов) зависит от количества данных и для его определения часто используется формула √n, где n – это количество данных в выборке. В нашем случае √n=√50=7,07 (всего 7 полноценных карманов, т.к. первый карман включает только значения равные минимальному).

Примечание: Похоже, что инструмент Гистограмма для подсчета общего количества интервалов (с учетом первого) использует формулу
=ЦЕЛОЕ(КОРЕНЬ(СЧЕТ(Исходные_данные)))+1

Попробуйте, например, сравнить количество интервалов для диапазонов длиной 35 и 36 значений – оно будет отличаться на 1, а у 36 и 48 – будет одинаковым, т.к. функция ЦЕЛОЕ() округляет до ближайшего меньшего целого (ЦЕЛОЕ(КОРЕНЬ(35))=5 , а ЦЕЛОЕ(КОРЕНЬ(36))=6) .

Если установить галочку напротив поля Парето (отсортированная гистограмма), то к таблице с частотами будет добавлена таблица с отсортированными по убыванию частотами.

Если установить галочку напротив поля Интегральный процент, то к таблице с частотами будет добавлен столбец с нарастающим итогом в % от общего количества значений в массиве.

Если выбор количества интервалов или их диапазонов не устраивает, то можно в диалоговом окне указать нужный массив интервалов (если интервал карманов включает текстовый заголовок, то нужно установить галочку напротив поля Метка).

Для нашего набора данных установим размер кармана равным 100 и первый карман возьмем равным 150.

В результате получим практически такую же по форме гистограмму, что и раньше, но с более красивыми границами интервалов.

Как видно из рисунков выше, надстройка Пакет анализа не осуществляет никакого дополнительного форматирования диаграммы. Соответственно, вид такой гистограммы оставляет желать лучшего (столбцы диаграммы обычно располагают вплотную для непрерывных величин, кроме того подписи интервалов не информативны). О том, как придать диаграмме более презентабельный вид, покажем в следующем разделе при построении гистограммы с помощью функции ЧАСТОТА() без использовании надстройки Пакет анализа.

Построение гистограммы распределения без использования надстройки Пакет анализа

Порядок действий при построении гистограммы в этом случае следующий:

  • определить количество интервалов у гистограммы;
  • определить ширину интервала (с учетом округления);
  • определить границу первого интервала;
  • сформировать таблицу интервалов и рассчитать количество значений, попадающих в каждый интервал (частоту);
  • построить гистограмму.

СОВЕТ: Часто рекомендуют, чтобы границы интервала были на один порядок точнее самих данных и оканчивались на 5. Например, если данные в массиве определены с точностью до десятых: 1,2; 2,3; 5,0; 6,1; 2,1, …, то границы интервалов должны быть округлены до сотых: 1,25-1,35; 1,35-1,45; …
Для небольших наборов данных вид гистограммы сильно зависит количества интервалов и их ширины. Это приводит к тому, что сам метод гистограмм, как инструмент описательной статистики, может быть применен только для наборов данных состоящих, как минимум, из 50, а лучше из 100 значений.

В наших расчетах для определения количества интервалов мы будем пользоваться формулой =ЦЕЛОЕ(КОРЕНЬ(n))+1 .

Примечание: Кроме использованного выше правила (число карманов = √n), используется ряд других эмпирических правил, например, правило Стёрджеса (Sturges): число карманов =1+log2(n). Это обусловлено тем, что например, для n=5000, количество интервалов по формуле √n будет равно 70, а правило Стёрджеса рекомендует более приемлемое количество — 13.

Расчет ширины интервала и таблица интервалов приведены в файле примера на листе Гистограмма . Для вычисления количества значений, попадающих в каждый интервал, использована формула массива на основе функции ЧАСТОТА() . О вводе этой функции см. статью Функция ЧАСТОТА() — Подсчет ЧИСЛОвых значений в MS EXCEL.

В MS EXCEL имеется диаграмма типа Гистограмма с группировкой, которая обычно используется для построения Гистограмм распределения.

В итоге можно добиться вот такого результата.

Примечание: О построении и настройке макета диаграмм см. статью Основы построения диаграмм в MS EXCEL.

Одной из разновидностей гистограмм является график накопленной частоты (cumulative frequency plot).

На этом графике каждый столбец представляет собой число значений исходного массива, меньших или равных правой границе соответствующего интервала. Это очень удобно, т.к., например, из графика сразу видно, что 90% значений (45 из 50) меньше чем 495.

СОВЕТ : О построении двумерной гистограммы см. статью Двумерная гистограмма в MS EXCEL.

Примечание: Альтернативой графику накопленной частоты может служить Кривая процентилей, которая рассмотрена в статье про Процентили.

Примечание: Когда количество значений в выборке недостаточно для построения полноценной гистограммы может быть полезна Блочная диаграмма (иногда она называется Диаграмма размаха или Ящик с усами).

Частотный анализ в среде MS Excel

Главная > Лабораторная работа >Информатика, программирование

Частотный анализ в среде MS Excel

Цель работы: Приобрести навыки решения задач частотного анализа с помощью функции рабочего листа анализа MS Excel.

Краткая теория

При анализе экономических показателей часто возникает вопрос, как часто встречаются показатели в заданных интервалах значений.

Функция ЧАСТОТА рабочего листа анализа MS Excel относится к категории статистических функций и возвращает распределение частот в виде вертикального массива. Для данного множества значений и заданного множества карманов (интервалов) частотное распределение подсчитывает, сколько значений попадает в каждый интервал.

В качестве массива данных может быть одномерный или двумерный массив (например, A4:D15).

Читать еще:  Как сделать в excel разделы которые раскрываются при клике?

Синтаксис: ЧАСТОТА ( массив_данных; массив_карманов)

Для частотного анализа можно использовать команду Сервис/Анализ данных. Анализ данных является одной из надстроек Excel. Если в меню отсутствует эта команда, то следует выполнить команду Сервис/ Надстройки и установить соответствующий флажок в окне Надстройки.

С помощью функции Частота для выборки множества сумм заказов () введите в диапазон подсчитайте, сколько значений попадают в заданные интервалы значений. Например, от 0 до 1000, от 1001 до 1500, от 1501 до 2000, от 2001 до 2500, свыше 2500.

На рабочем листе MS Excel введите данные об объемах заказов в 20 филиалах фирмы за сентябрь в виде таблицы, фрагмент которой показан на рисунке.

В свободный диапазон клеток (столбец) введите верхние границы интервалов (Например, D2=1000, D3=1500, D4=2000, D5=2500).

Выделите блок ячеек столбца, смежного со столбцом интервалов (E2:E21). Для того, чтобы подсчитать количество значений, превышающих нижнюю границу интервала, выделяется диапазон, на одну ячейку больше, чем диапазон интервалов.

В диапазон E2:E6 введите формулу < =ЧАСТОТА(E2:E15;J2:J6)>.

Для этого воспользуйтесь мастером функций (Вставка/ Функция). В категории «Статистические» выберите из списка функцию «Частота». В диалоговом окне функции ЧАСТОТА заполните поля массива выборки и массива интервалов (рисунок 1). Не выходя из окна диалога нажмите комбинацию клавиш для расчета элементов массива.

Рисунок 1 – Пример заполнения диалогового окна функции Частота.

Постройте диаграмму по полученным результатам.

Задание к лабораторной работе (часть 3)

Создайте на рабочем листе двумерный массив, содержащий статистические данные о росте людей различных возрастных категорий. Проведите частотный анализ результатов с помощью функции ЧАСТОТА и Анализа данных (пункт меню Анализ данных/ Гистограмма).

При использовании инструмента анализа данных в диалоговом окне в поле Входной интервал введите исходный интервал по которому строится гистограмма, в поле Интервал карманов — диапазон со значениями верхних границ интервалов. Гистограмма строится на новом или на текущем рабочем листе.

Решение задач прогнозирования в среде MS Excel. Метод скользящего среднего

Цель работы: Приобрести навыки прогнозирования экономической деятельности предприятия с применением статистического программного пакета MS Excel.

Краткая теория

Под прогнозом понимается научно обоснованное описание возможных состояний системы в будущем. Любая организация при разработке краткосрочных и долгосрочных планов вынуждена прогнозировать значение важнейших показателей экономической деятельности, таких как объем продукции, продаж, издержек производства и т.д. В настоящее время для решения задач прогнозирования используют современные информационные технологии, программные средства которых включают статистические программные пакеты.

Для решения задач прогнозирования в среде MS Excel используется Пакет анализа, включающий инструменты анализа. Выбрав инструмент для анализа данных, и задав необходимые параметры, можно быстро решать сложные статистические задачи, сопровождая их графической интерпретацией.

Предварительный анализ временных рядов экономических показателей предполагает выявление аномальных значений уровней ряда, нарушающих определение наличия тренда. Для устранения аномальных значений показателей применяется процедура сглаживания временного ряда. При этом для выявления тенденции ряда фактические значения заменяются расчетными.

При выборе метода прогнозирования учитывают характер изменения случайной величины временного ряда. Если вариация средних значений незначительна и все наблюдения временного ряда имеют одинаковую значимость для прогноза, то используют метод скользящего среднего. Скользящие средние позволяют сгладить (отфильтровать) случайные и периодические колебания временного ряда. Сглаживание простой скользящей средней является наиболее распространенной процедурой сглаживания.

В инструменте анализа MS Excel Скользящее среднее количество значений, участвующих в вычислении прогнозируемой величины, задается параметром Интервал. Величину интервала сглаживания выбирают тем больше, чем более необходимо сгладить мелкие колебания значений ряда. Метод Простой скользящей средней дает хорошие результаты в динамических рядах с линейной тенденцией развития.

Если для прогноза наиболее значимыми являются последние результаты наблюдений, то используют метод экспоненциального сглаживания. В методе экспоненциального сглаживания каждое значение участвует в формировании прогнозируемых значений с переменным весом, который убывает по мере «устаревания» данных. В инструменте анализа MS Excel «Экспоненциальное сглаживание» весовой коэффициент, или параметр сглаживания, определяется параметром Фактор затухания. Обычно для временных рядов в экономических задачах величину параметра сглаживания задают в интервале от 0,1 до 0,3. Начальное расчетное значение в процедуре Экспоненциальное сглаживание пакета Анализа MS Excel принимается равным уровню первого члена ряда. Метод обеспечивает хорошее согласование исходных и расчетных данных для первых значений ряда. Если конечные вычисленные значения значительно отличаются от соответствующих исходных, то целесообразно изменить величину параметра сглаживания. Оценить величины расхождений можно на основе стандартных погрешностей и графика, которые пакет Анализа позволяет вывести вместе с расчетными значениями ряда.

Рассмотрим возможности прогнозирования показателей деятельности предприятия, занимающихся предоставлением услуг связи.

Задание к лабораторной работе (часть 2)

Задание 1: Вычислить прогнозируемое значение величины объема продукции (услуг) предприятия методом скользящего среднего.

Порядок выполнения задания:

Создадим на рабочем листе столбец, содержащий данные об объеме услуг в млн. руб, оказанных предприятием за последние 10 лет. Выявим тенденцию изменения показателя с помощью скользящего среднего. Выберем трехгодичный период скользящего среднего, так как за меньший период скользящее среднее может не отразить тенденцию, а за более продолжительный – сгладит ее.

Для вычислений воспользуемся способом прямого введения формулы. Чтобы получить трехлетнее скользящее среднее объема выполненных услуг для нашего примера, введем в ячейку B5 формулу для вычисления =СРЗНАЧ(A2:A4). Скопируем формулу в интервал B6:B11.

Рисунок 1 – Вычисление простого скользящего среднего

Проиллюстрируем результаты графиком, отражающим динамику изменения исходных данных и скользящего среднего.

Рисунок 2 – График тенденции изменения показателя объема услуг, полученной методом простого скользящего среднего

Другим способом решения является использование для определения скользящего целого Пакета анализа. Пакет анализа является надстройкой MS Excel (выберите пункт меню Сервис/ Надстройки и установите флажок Пакет анализа).

Выполнить команду Сервис/Анализ данных и выбрать из списка инструментов анализа Скользящее среднее.

В диалоговом окне укажите параметры для вычисления скользящего среднего:

В качестве входного интервала выделите блок ячеек, содержащий данные об объеме услуг.

Укажите Интервал- 3 (по умолчанию используется 3), в качестве выходного интервала – любую ячейку рабочего листа (просто щелкните на ячейке рабочего листа, с которой должны выводиться результаты);

Задайте вывод графика и стандартных погрешностей.

Excel сам выполнит работу по внесению значений в формулу для вычислений скользящего среднего. Из-за недостаточного количества данных при вычислении среднего значения для первых результатов наблюдений в начальных ячейках выходного диапазона будет выведено значение ошибки #Н/Д. Учтите, что первое полученное значение ряда является прогнозным не на третий, а на четвертый период. Поэтому, если указанная для вывода ячейка соответствует началу столбца наблюдений, то нужно столбец рассчитанных значений переместить вниз на одну ячейку. Это действие присоединит прогнозы именно к тем периодам, для которых они рассчитаны.

Проанализируйте используемые расчетные формулы и полученные результаты.

Аналогично вычислите пятилетние простые скользящие средние. Сравните результаты сглаживания для двух вариантов расчета.

Задание 2: Вычислить прогнозируемое значение величины объема продукции (услуг) предприятия методом экспоненциального сглаживания.

На листе MS Excel создайте список, содержащий данные о численности сотрудников фирмы за последние 10 лет. Данные введите произвольно, но так, чтобы прослеживалась тенденция.

Проведите сглаживание временного ряда с использованием экспоненциальной средней с параметрами сглаживания 0,1 и затем 0,3. По результатам расчетов постройте график и определите, какой из полученных временных рядов носит более гладкий характер.

Воспользуйтесь командой Сервис/Анализ данных и выберите из списка инструментов анализа Экспоненциальное сглаживание. Укажите параметры для вычисления скользящего среднего:

В качестве входного интервала выделите блок ячеек, содержащий данные о численности.

Читать еще:  Как сделать кнопку перехода на другой лист в excel?

Укажите Фактор затухания. В качестве выходного интервала – любую ячейку рабочего листа.

Задайте вывод графика и стандартных погрешностей.

Добавьте линии тренда на полученных графиках. Для этого выберите линию графика (просто щелкните правой кнопкой мыши на линии графика) и в контекстном меню выберите пункт Добавить линию тренда. В диалоговом окне выберите наиболее подходящий для ваших данных тип тренда (например, линейная фильтрация) и установите флажок вывода уравнения аппроксимирующей кривой на графике.

Проверьте и сохраните результаты.

Решение задач прогнозирования с помощью функций рабочего листа и маркера заполнения


Краткая теория

В экономическом прогнозировании применяют различные модели роста. Кривая роста представляет собой некоторую функцию, аппроксимирующую заданный динамический ряд. При разработке прогноза с использованием кривых роста производят выбор кривых, форма которых соответствует динамике временного ряда, оцениваются их параметры, проверяется адекватность выбранных кривых прогнозируемому процессу и производится расчет точечного или интервального прогноза.

Существует несколько методов подбора кривых. Одним из самых простых является визуальный метод. Если на графике недостаточно просматривается тенденция развития (тренд), то производят, как описано выше, сглаживание ряда, а затем подбирается кривая, соответствующая новому ряду. В этом случае также применяются современные программные средства компьютерных систем. В MS Excel встроены специальные функции, позволяющие рассчитывать прогнозируемые значения на определенный период.

Excel проводит линейную экстраполяцию, т.е. рассчитывает наиболее подходящую прямую, которая проходит через серию заданных точек. Задача заключается в нанесении на график набора точек, а затем в подборе линии, по которой можно проследить развитие функции с наименьшей ошибкой. Эта линия называется линией ТРЕНДА. Пользователь может использовать результат вычислений для анализа тенденций и краткосрочного прогнозирования.

Excel может автоматически проводить линии тренда, различных типов непосредственно на диаграмме. Вычисления можно производить двумя способами:

С помощью маркера заполнения

С помощью функций рабочего листа

Выделить ячейки с результатами наблюдений.

Перетащить с помощью левой кнопки мыши маркер заполнения, чтобы выделенными оказались также и ячейки, для которых необходимо рассчитать прогнозируемые значения. Рассчитанные таким образом значения соответствуют линейному прогнозу.

Выделить ячейки с результатами наблюдений.

Перетащить маркер заполнения с помощью правой кнопки мыши, чтобы выделенными оказались также и ячейки, для которых необходимо рассчитать прогнозируемые значения.

В появившемся контекстном меню выбрать команду «Экспоненциальное приближение».

В MS Excel встроены статистические функции рабочего листа.

ТЕНДЕНЦИЯ() — возвращает значения в соответствии с линейной аппроксимацией по методу наименьших квадратов.

РОСТ() — возвращает значения в соответствии с экспоненциальным трендом.

Использование этих функций – еще один способ вычисления регрессионного анализа.

ТЕНДЕНЦИЯ (изв_знач_Y; изв_знач_X; нов_знач_X; константа)

Функция РОСТ возвращает значения в соответствии с экспоненциальным трендом.

Задание к лабораторной работе (часть 3)

Рассчитайте линейный и экспоненциальный прогноз на один год и на последующие три периода (до 2011 года) с помощью маркера заполнения.

Рассчитайте линейный и экспоненциальный прогноз на один год и затем на последующие три периода с помощью функций рабочего листа ТЕНДЕНЦИЯ и РОСТ. Для расчета интервального прогноза после заполнения параметров диалогового окна функции и не выходя из него нажмите комбинацию клавиш Ctrl/ Shift/ Enter.

В строке формул рабочего листа должна появиться формула для расчета элементов массива, например,

Определите, какая модель является наиболее точной.

Постройте графики и линии тренда для первого и второго задания.

Примеры функции ЧАСТОТА в Excel для расчета частоты повторений

Функция ЧАСТОТА используется для определения количества вхождения определенных величин в заданный интервал и возвращает данные в виде массива значений. Используя функцию ЧАСТОТА, мы узнаем, как посчитать частоту в Excel.

Пример использования функции ЧАСТОТА в Excel

Пример 1. Студенты одной из групп в университете сдали экзамен по физике. При оценке качества сдачи экзамена используется 100-бальная система. Для определения окончательной оценки по 5-бальной системе используют следующие критерии:

  1. От 0 до 50 баллов – экзамен не сдан.
  2. От 51 до 65 баллов – оценка 3.
  3. От 66 до 85 баллов – оценка 4.
  4. Свыше 86 баллов – оценка 5.

Для статистики необходимо определить, сколько студентов получили 5, 4, 3 баллов и количество тех, кому не удалось сдать экзамен.

Внесем данные в таблицу:

Для решения выделим области из 4 ячеек и введем следующую функцию:

  • B3:B20 – массив данных об оценках студентов;
  • D3:D5 – массив критериев нахождения частоты вхождений в массиве данных об оценках.

Выделяем диапазон F3:F6 жмем сначала клавишу F2, а потом комбинацию клавиш Ctrl+Shift+Enter, чтобы функция ЧАСТОТА была выполнена в массиве. Подтверждением того что все сделано правильно будут служить фигурные скобки <> в строке формул по краям. Это значит, что формула выполняется в массиве. В результате получим:

То есть, 6 студентов не сдали экзамен, оценки 3, 4 и 5 получили 3, 4 и 5 студентов соответственно.

Пример определения вероятности используя функцию ЧАСТОТА в Excel

Пример 2. Известно то, что если существует только два возможных варианта развития событий, вероятности первого и второго равны 0,5 соответственно. Например, вероятности выпадения «орла» или «решки» у подброшенной монетки равны ½ и ½ (если пренебречь возможностью падения монетки на ребро). Аналогичное расчетное распределение вероятностей характерно для следующей функции СЛУЧМЕЖДУ(1;2), которая возвращает случайное число в интервале от 1 до 2. Было проведено 20 вычислений с использованием данной функции. Определить фактические вероятности появления чисел 1 и 2 соответственно на основании полученных результатов.

Заполним исходную таблицу случайными значениями от 1-го до 2-ух:

Для определения случайных значений в исходной таблице была использована специальная функция:

Для определения количества сгенерированных 1 и 2 используем функцию:

  • A2:A21 – массив сгенерированных функцией =СЛУЧМЕЖДУ(1;2) значений;
  • 1 – критерий поиска (функция ЧАСТОТА ищет значения от 0 до 1 включительно и значения >1).

В результате получим:

Вычислим вероятности, разделив количество событий каждого типа на общее их число:

Для подсчета количества событий используем функцию =СЧЁТ($A$2:$A$21). Или можно просто разделить на значение 20. Если заранее не известно количество событий и размер диапазона со случайными значениями, тогда можно использовать в аргументах функции СЧЁТ ссылку на целый столбец: =СЧЁТ(A:A). Таким образом будет автоматически подсчитывается количество чисел в столбце A.

Вероятности выпадения «1» и «2» — 0,45 и 0,55 соответственно. Не забудьте присвоить ячейкам E2:E3 процентный формат для отображения их значений в процентах: 45% и 55%.

Теперь воспользуемся более сложной формулой для вычисления максимальной частоты повторов:

1)*СТРОКА($A$2:$A$21)))-1′ class=’formula’>

Формулы в ячейках F2 и F3 отличаются только одним лишь числом после оператора сравнения «не равно»: <>1 и <>2.

Интересный факт! С помощью данной формулы можно легко проверить почему не работает стратегия удвоения ставок в рулетке казино. Данную стратегию управления ставками в азартных играх называют еще Мартингейл. Дело в том, что количество случайных повторов подряд может достигать 18-ти раз и более, то есть восемнадцать раз подряд красные или черные. Например, если ставку в 2 доллара 18 раз удваивать – это уже более пол миллиона долларов «просадки». Это уже провал по любым техникам планирования рисков. Так же следует учитывать, что кроме «черные» и «красные» иногда выпадает еще и «зеро», что окончательно уничтожает все шансы. Так же интересно, что сумма всех чисел в рулетке от 0 до 36 равна 666.

Как посчитать неповторяющиеся значения в Excel?

Пример 3. Определить количество уникальных вхождений в массив числовых данных, то есть не повторяющихся значений.

Определим искомую величину с помощью формулы:

Читать еще:  Как сделать принтер по умолчанию в excel?

В данном случае функция ЧАСТОТА выполняет проверку наличия каждого из элементов массива данных в этом же массиве данных (оба аргумента совпадают). С помощью функции ЕСЛИ задано условие, которое имеет следующий смысл:

  1. Если искомый элемент содержится в диапазоне значений, вместо фактического количества вхождений будет возвращено 1;
  2. Если искомого элемента нет – будет возвращен 0 (нуль).

Полученное значение (количество единиц) суммируется.

В результате получим:

То есть, в указанном массиве содержится 8 уникальных значений.

Функция ЧАСТОТА в Excel и особенности ее синтаксиса

Данная функция имеет следующую синтаксическую запись:

Описание аргументов функции (оба являются обязательными для заполнения):

  • массив_данных – данные в форме массива либо ссылка на диапазон значений, для которых необходимо определить частоты.
  • массив_интервалов — данные в формате массива либо ссылка не множество значений, в которые группируются значения первого аргумента данной функции.
  1. Если в качестве аргумента массив_интервалов был передан пустой массив или ссылка на диапазон пустых значений, результатом выполнения функции ЧАСТОТА будет являться число элементов, входящих диапазон данных, которые были переданы в качестве первого аргумента.
  2. При использовании функции ЧАСТОТА в качестве обычной функции Excel будет возвращено единственное значение, соответствующее первому вхождению в массив_интервалов (то есть, первому критерию поиска частоты вхождения).
  3. Массив возвращаемых данной функцией элементов содержит на один элемент больше, чем количество элементов, содержащихся в массив_интервалов. Это происходит потому, что функция ЧАСТОТА вычисляет также количество вхождений величин, значения которых превышают верхнюю границу интервалов. Например, в наборе данных 2,7, 10, 13, 18, 4, 33, 26 необходимо найти количество вхождений величин из диапазонов от 1 до 10, от 11 до 20, от 21 до 30 и более 30. Массив интервалов должен содержать только их граничные значения, то есть 10, 20 и 30. Функция может быть записана в следующем виде: =ЧАСТОТА(<2;7;10;13;18;4;33;26>;<10;20;30>), а результатом ее выполнения будет столбец из четырех ячеек, которые содержат следующие значения: 4,2, 1, 1. Последнее значение соответствует количеству вхождений чисел > 30 в массив_данных. Такое число действительно является единственным – это 33.
  4. Если в состав массив_данных входят ячейки, содержащие пустые значения или текст, они будут пропущены функцией ЧАСТОТА в процессе вычислений.

    Функция может использоваться для выполнения статистического анализа, например, с целью определения наиболее востребованных для покупателей наименований продукции.

  • Данная функция должна быть использована как формула массива, поскольку возвращаемые ей данные имеют форму массива. Для выполнения обычных формул после их ввода необходимо нажать кнопку Enter. В данном случае требуется использовать комбинацию клавиш Ctrl+Shift+Enter.
  • Металловедение

    Очень давно не писал блог. Расслабился совсем. Ну ничего, исправляюсь.

    Продолжаю новую рубрику блога, посвященную анализу данных с помощью всем известного Microsoft Excel.

    В современном мире к статистике проявляется большой интерес, поскольку это отличный инструмент для анализа и принятия решений, а также это отличное средство для поиска причин нарушений процесса и их устранения. Статистический анализ применим во многих сферах, где существуют большие массивы данных: естественно, в первую очередь я скажу, что металлургии, а также в экономике, биологии, политике, социологии и. много где еще. Статья эта будет, как несложно догадаться по ее названию, про использование некоторых средств статистического анализа, а именно — гистограммам.
    Ну, поехали.

    Статистический анализ в Excel можно осуществлять двумя способами:
    • С помощью функций
    • С помощью средств надстройки «Пакет анализа». Ее, как правило, еще необходимо установить.

    Чтобы установить пакет анализа в Excel, выберите вкладку «Файл» (а в Excel 2007 это круглая цветная кнопка слева сверху), далее — «Параметры», затем выберите раздел «Надстройки». Нажмите «Перейти» и поставьте галочку напротив «Пакет анализа».

    А теперь — к построению гистограмм распределения по частоте и их анализу.

    Речь пойдет именно о частотных гистограммах, где каждый столбец соответствует частоте появления* значения в пределах границ интервалов. Например, мы хотим посмотреть, как у нас выглядит распределение значения предела текучести стали S355J2 в прокате толщиной 20 мм за несколько месяцев. В общем, хотим посмотреть, похоже ли наше распределение на нормальное (а оно должно быть таким).

    *Примечание: для металловедческих целей типа оценки размера зерна или оценки объемной доли частиц этот вид гистограмм не пойдет, т.к. там высота столбика соответствует не частоте появления частиц определенного размера, а доле объема (а в плоскости шлифа — площади), которую эти частицы занимают.

    График нормального распределения выглядит следующим образом:

    График функции Гаусса

    Мы знаем, что реально такой график может быть получен только при бесконечно большом количестве измерений. Реально же для конечного числа измерений строят гистограмму, которая внешне похожа на график нормального распределения и при увеличении количества измерений приближается к графику нормального распределения (распределения Гаусса).

    Построение гистограмм с помощью программ типа Excel является очень быстрым способом проверки стабильности работы оборудования и добросовестности коллектива: если получим «кривую» гистограмму, значит, либо прибор не исправен или мы данные неверно собрали, либо кто-то где-то преднамеренно мухлюет или же просто неверно использует оборудование.

    style=»display:inline-block;width:468px;height:60px»
    data-ad-client=»ca-pub-9341405937949877″
    data-ad-slot=»7116308946″>

    А теперь — построение гистограмм!

    Способ 1-ый. Халявный.

      Идем во вкладку «Анализ данных» и выбираем «Гистограмма».


  • Выбираем входной интервал.
  • Здесь же предлагается задать интервал карманов, т.е. те диапазоны, в пределах которых будут лежать наши значения. Чем больше значений в интервале — тем выше столбик гистограммы. Если мы оставим поле «Интервалы карманов» пустым, то программа вычислит границы интервалов за нас.
  • Если хотим сразу же вывести график,то ставим галочку напротив «Вывод графика».

  • Нажимаем «ОК».
  • Вот, вроде бы, и все: гистограмма готова. Теперь нужно сделать так, чтобы по вертикальной оси отображалась не абсолютная частота, а относительная.

  • Под появившейся таблицей со столбцами «Карман» и «Частота» под столбцом «Частота» введем формулу «=СУММ» и сложим все абсолютные частоты.
  • К появившейся таблице со столбцами «Карман» и «Частота» добавим еще один столбец и назовем его «Относительная частота».
  • Во всех ячейках нового столбца введем формулу, которая будет рассчитывать относительную частоту: 100 умножить на абсолютную частоту (ячейка из столбца «частота») и разделить на сумму, которую мы вычислил в п. 7.
  • Способ 2-ой. Трудный, но интересный.

    Будет полезен тому, кто по каким-либо причинам не смог установить Пакет анализа.

    1. Перво-наперво нужно задать интервалы тех самых карманов, которые мы не стали вычислять в способе, описанном выше.
    2. Интервал карманов вычисляют так: разность максимального значения и минимального значений массива, деленная на количество интервалов: (Xmax-Xmin)/n.
      Для оценки оптимального для нашего массива данных количества интервалов можно воспользоваться формулой Стерджесса: n

    1+3,322lgN, где N — количество всех значений величины. Например для N=100, n=7,6. Естественно, округляем до 8.

  • Для нахождения максимального и минимального значений воспользуемся соответствующими функциями: =МАКС(наш диапазон значений) и =МИН(наш диапазон значений).
  • Найдем разность этих значений и разделим его на количество интервалов, которое нам захочется. Пусть будет 10. Так мы вычислили ширину нашего «кармана».

    Теперь в каждой ячейке шаг за шагом прибавляем полученное значение ширины кармана: сначала к минимальному значению нашего массива (п. 3), затем в следующей ячейке ниже — к полученной сумме и т.д. Так постепенно доходим до максимального значения. Вот мы и построили интервалы карманов в виде столбца значений. Интервалом считается следующий диапазон : (i-1; i] или i >Скачать бесплатно видеокурc по Excel

  • Ссылка на основную публикацию
    Adblock
    detector