Как сделать график распределения в excel?

Построить график распределения в Excel

Excel при изученииоснов теории вероятности и математической статистики

Тампишева С.Б.,

старший преподаватель Казахского финансово-экономического института, г .С емипалатинск, Республика Казахстан

Высшее образование и наукастановятся глобальным фактором общественного развития, выдвигаются в числонаиболее важныхнациональных и общемировых приоритетов, выступаютв качестве важнейших компонентовкультурного, социального и экономическиустойчивого развития людей, сообществ, наций[1].

В докладе ЮНЕСКО « Высшее образование в XXI веке: подходы и практические меры» (1998г.) отмечалось, что «в сфере высшего образования наблюдается теснейшее сближение, если не общность проблем, тенденций, задач и целей, заставляющихзабыватьо национальных и региональныхразличиях и специфике«[2]. Сложившиеся в настоящее время социально-экономическиеи социально-культурные условиятребуют подготовки специалиста, конкурентоспособного на рынке труда.

Для успешного функционированияспециалиста в высокотехнологическом обществе необходимо постоянное пополнениебагажа знаний, умений и навыков.Непрерывное образование- необходимость и требование современнойнаучно-технической цивилизации.

Главная задача высшейшкол ы- поднять профессиональную и социальнуюкомпетентность выпускников вузов, научить их ориентироваться в потоке постоянно меняющейся информации, мыслитьсамостоятельно, критически и творчески. Сегодня этоневозможно без овладения студентами знаниями, умениями, навыками использования информационных технологий в сферебудущей профессиональной деятельности.

К настоящему времени исследователи пришлик единому мнению, что информационные технологии должны разрабатываться с учетом классических дидактических требований: принципа научности, доступности и посильной трудности, систематичности и последовательности, прочности усвоения, наглядности, связи теории с практикой, сознательности и активности (самостоятельности), принципа коллективного характера обучения и учета индивидуальных особенностейобучающихся, однако применительно к новым информационным технологиямониимеют свою специфику [3].

ПЭВМ наиболее полно удовлетворяет дидактическим требованиям и позволяет управлять процессом обучения, максимально адаптировать его киндивидуальнымособенностям обучаемого. Знания, полученные при компьютерном обучении, выступают в познавательной деятельностив качестве средстварешения профессиональных задачдеятельности специалиста.

Также исследователи выделяют возможные направлениявключениякомпьютера в процесс учебно-познавательной деятельности обучаемых: диагностика, обучающий режим, отработка умений и навыковпри решении задачпосле изучения темы, моделирование сложных процессов, графическая иллюстрация изучаемого материала, работа с базами данных [4].

Остановимся наприменениитабличного процессора Microsoft Excel при изучении элементов теории вероятностей и математической статистики вкурсематематики для экономистов. Курс математики в системе подготовки экономистовявляется основой дляизучения таких дисциплин какэконометрика, статистика, микроэкономика, макроэкономика, а математические методы исследуютсяво всех областях знаний. В процессе обучения математике у студентов вырабатываютсянавыки исследовательской работы, формируются приемы умственной деятельности, развивается интеллект, т. е.формируетсяличностьбудущего специалиста с необходимымипрофессионально значимымикачествами.

Применение математического аппарата теории вероятностей и математической статистики позволяетполучать наиболее вероятныеколичественныезначенияэкономических показателей, устанавливать связьмежду различнымислучайными параметрами и приниматьобоснованные решения в экономике.

В настоящее время математико-статистические методы широко внедрилисьв жизнь, благодаряперсональным электронно-вычислительным машинам. Статистическиепрограммные пакеты сделали эти методы более доступными и наглядными, так как трудоемкуюпо расчету различныхстатистик, параметров, характеристик, построению таблиц и графиков в основном стал выполнять компьютер, а исследователюостаетсяглавным образом творческая работа: постановка задачи, выбор методов ее решения и интерпретация результатов.

Существует множество различных пакетов программ по работе со статистическими данными, но наибольшее распространение в деловой сфере получил табличный процессор Microsoft Excel . Он включает в себя программную надстройку «Пакет анализа» и библиотеку из 83 (в среде Microsoft Excel 2000) статистических функций , 50 математических функций,которые позволяют автоматизироватьрасчеты, а такжена их основеполучить графическую интерпретацию.

При изучении основных понятий и теорем теории вероятностей можно использовать, например,такие функции Excel как: экспонента, степень, факториал, перестановки, число комбинаций, вероятность. Изучаяслучайные величины и их характеристики, можно использовать, например, такие статистические функции как дисперсия, доверительный интервал, медиана, мода , различные виды распределений случайных величин и др. Кроме того,в дальнейшем, при изучении эконометрикии статистики,предоставляется широкийвыбор другихстатистических функций.

Рассмотрим использование Excel при изученииразличных видовраспределений дискретных и непрерывных случайных величин.

При работе со случайными величинамина лекционных занятиях студентовзнакомят с понятиемслучайной величины, законами ее распределения, математическим ожиданием, дисперсией. Формируются вероятностные модели биномиального распределения, распределения Пуассона, геометрического и гипергеометрического и других распределений, во время практических занятий эти понятия закрепляются и отрабатываются. Задания, выполненные на компьютере, помогут вывести обучающихсяна более высокий уровень усвоения знаний и умений,и сопровождаться значительной экономией времени.

При рассмотрениизаконов распределения, например, нужно обратить внимание насферы ихиспользования. При построении графиков функцийсравнивать их кривые, анализировать, делать выводы.

Рассмотрим задание набиномиальное распределение:

Задание 1. Построить с помощью программы Excel , многоугольникбиномиального распределения для следующих параметров:

Используетсястатистическая функция БИНОМРАСПР:

Гистограмма распределения в MS EXCEL

Гистограмма распределения — это инструмент, позволяющий визуально оценить величину и характер разброса данных. Создадим гистограмму для непрерывной случайной величины с помощью встроенных средств MS EXCEL из надстройки Пакет анализа и в ручную с помощью функции ЧАСТОТА() и диаграммы.

Гистограмма (frequency histogram) – это столбиковая диаграмма MS EXCEL, в каждый столбик представляет собой интервал значений (корзину, карман, class interval, bin, cell), а его высота пропорциональна количеству значений в ней (частоте наблюдений).

Гистограмма поможет визуально оценить распределение набора данных, если:

  • в наборе данных как минимум 50 значений;
  • ширина интервалов одинакова.

Построим гистограмму для набора данных, в котором содержатся значения непрерывной случайной величины. Набор данных (50 значений), а также рассмотренные примеры, можно взять на листе Гистограмма AT в файле примера. Данные содержатся в диапазоне А8:А57.

Примечание: Для удобства написания формул для диапазона А8:А57 создан Именованный диапазон Исходные_данные.

Построение гистограммы с помощью надстройки Пакет анализа

Вызвав диалоговое окно надстройки Пакет анализа, выберите пункт Гистограмма и нажмите ОК.

В появившемся окне необходимо как минимум указать: входной интервал и левую верхнюю ячейку выходного интервала. После нажатия кнопки ОК будут:

  • автоматически рассчитаны интервалы значений (карманы);
  • подсчитано количество значений из указанного массива данных, попадающих в каждый интервал (построена таблица частот);
  • если поставлена галочка напротив пункта Вывод графика, то вместе с таблицей частот будет выведена гистограмма.


Перед тем как анализировать полученный результат — отсортируйте исходный массив данных.

Как видно из рисунка, первый интервал включает только одно минимальное значение 113 (точнее, включены все значения меньшие или равные минимальному). Если бы в массиве было 2 или более значения 113, то в первый интервал попало бы соответствующее количество чисел (2 или более).

Второй интервал (отмечен на картинке серым) включает значения больше 113 и меньше или равные 216,428571428571. Можно проверить, что таких значений 11. Предпоследний интервал, от 630,142857142857 (не включая) до 733,571428571429 (включая) содержит 0 значений, т.к. в этом диапазоне значений нет. Последний интервал (со странным названием Еще) содержит значения больше 733,571428571429 (не включая). Таких значений всего одно — максимальное значение в массиве (837).

Размеры карманов одинаковы и равны 103,428571428571. Это значение можно получить так:
=(МАКС(Исходные_данные)-МИН(Исходные_данные))/7
где Исходные_данные – именованный диапазон, содержащий наши данные.

Читать еще:  Как сделать запрос в excel 2010?

Почему 7? Дело в том, что количество интервалов гистограммы (карманов) зависит от количества данных и для его определения часто используется формула √n, где n – это количество данных в выборке. В нашем случае √n=√50=7,07 (всего 7 полноценных карманов, т.к. первый карман включает только значения равные минимальному).

Примечание: Похоже, что инструмент Гистограмма для подсчета общего количества интервалов (с учетом первого) использует формулу
=ЦЕЛОЕ(КОРЕНЬ(СЧЕТ(Исходные_данные)))+1

Попробуйте, например, сравнить количество интервалов для диапазонов длиной 35 и 36 значений – оно будет отличаться на 1, а у 36 и 48 – будет одинаковым, т.к. функция ЦЕЛОЕ() округляет до ближайшего меньшего целого (ЦЕЛОЕ(КОРЕНЬ(35))=5 , а ЦЕЛОЕ(КОРЕНЬ(36))=6) .

Если установить галочку напротив поля Парето (отсортированная гистограмма), то к таблице с частотами будет добавлена таблица с отсортированными по убыванию частотами.

Если установить галочку напротив поля Интегральный процент, то к таблице с частотами будет добавлен столбец с нарастающим итогом в % от общего количества значений в массиве.

Если выбор количества интервалов или их диапазонов не устраивает, то можно в диалоговом окне указать нужный массив интервалов (если интервал карманов включает текстовый заголовок, то нужно установить галочку напротив поля Метка).

Для нашего набора данных установим размер кармана равным 100 и первый карман возьмем равным 150.

В результате получим практически такую же по форме гистограмму, что и раньше, но с более красивыми границами интервалов.

Как видно из рисунков выше, надстройка Пакет анализа не осуществляет никакого дополнительного форматирования диаграммы. Соответственно, вид такой гистограммы оставляет желать лучшего (столбцы диаграммы обычно располагают вплотную для непрерывных величин, кроме того подписи интервалов не информативны). О том, как придать диаграмме более презентабельный вид, покажем в следующем разделе при построении гистограммы с помощью функции ЧАСТОТА() без использовании надстройки Пакет анализа.

Построение гистограммы распределения без использования надстройки Пакет анализа

Порядок действий при построении гистограммы в этом случае следующий:

  • определить количество интервалов у гистограммы;
  • определить ширину интервала (с учетом округления);
  • определить границу первого интервала;
  • сформировать таблицу интервалов и рассчитать количество значений, попадающих в каждый интервал (частоту);
  • построить гистограмму.

СОВЕТ: Часто рекомендуют, чтобы границы интервала были на один порядок точнее самих данных и оканчивались на 5. Например, если данные в массиве определены с точностью до десятых: 1,2; 2,3; 5,0; 6,1; 2,1, …, то границы интервалов должны быть округлены до сотых: 1,25-1,35; 1,35-1,45; …
Для небольших наборов данных вид гистограммы сильно зависит количества интервалов и их ширины. Это приводит к тому, что сам метод гистограмм, как инструмент описательной статистики, может быть применен только для наборов данных состоящих, как минимум, из 50, а лучше из 100 значений.

В наших расчетах для определения количества интервалов мы будем пользоваться формулой =ЦЕЛОЕ(КОРЕНЬ(n))+1 .

Примечание: Кроме использованного выше правила (число карманов = √n), используется ряд других эмпирических правил, например, правило Стёрджеса (Sturges): число карманов =1+log2(n). Это обусловлено тем, что например, для n=5000, количество интервалов по формуле √n будет равно 70, а правило Стёрджеса рекомендует более приемлемое количество — 13.

Расчет ширины интервала и таблица интервалов приведены в файле примера на листе Гистограмма . Для вычисления количества значений, попадающих в каждый интервал, использована формула массива на основе функции ЧАСТОТА() . О вводе этой функции см. статью Функция ЧАСТОТА() — Подсчет ЧИСЛОвых значений в MS EXCEL.

В MS EXCEL имеется диаграмма типа Гистограмма с группировкой, которая обычно используется для построения Гистограмм распределения.

В итоге можно добиться вот такого результата.

Примечание: О построении и настройке макета диаграмм см. статью Основы построения диаграмм в MS EXCEL.

Одной из разновидностей гистограмм является график накопленной частоты (cumulative frequency plot).

На этом графике каждый столбец представляет собой число значений исходного массива, меньших или равных правой границе соответствующего интервала. Это очень удобно, т.к., например, из графика сразу видно, что 90% значений (45 из 50) меньше чем 495.

СОВЕТ : О построении двумерной гистограммы см. статью Двумерная гистограмма в MS EXCEL.

Примечание: Альтернативой графику накопленной частоты может служить Кривая процентилей, которая рассмотрена в статье про Процентили.

Примечание: Когда количество значений в выборке недостаточно для построения полноценной гистограммы может быть полезна Блочная диаграмма (иногда она называется Диаграмма размаха или Ящик с усами).

Диаграмма распределения осадков в Excel

Построим диаграмму распределения в Excel. А также рассмотрим подробнее функции круговых диаграмм, их создание.

Как построить диаграмму распределения в Excel

График нормального распределения имеет форму колокола и симметричен относительно среднего значения. Получить такое графическое изображение можно только при огромном количестве измерений. В Excel для конечного числа измерений принято строить гистограмму.

Внешне столбчатая диаграмма похожа на график нормального распределения. Построим столбчатую диаграмму распределения осадков в Excel и рассмотрим 2 способа ее построения.

Имеются следующие данные о количестве выпавших осадков:

Первый способ. Открываем меню инструмента «Анализ данных» на вкладке «Данные» (если у Вас не подключен данный аналитический инструмент, тогда читайте как его подключить в настройках Excel):

Задаем входной интервал (столбец с числовыми значениями). Поле «Интервалы карманов» оставляем пустым: Excel сгенерирует автоматически. Ставим птичку около записи «Вывод графика»:

После нажатия ОК получаем такой график с таблицей:

В интервалах не очень много значений, поэтому столбики гистограммы получились низкими.

Теперь необходимо сделать так, чтобы по вертикальной оси отображались относительные частоты.

Найдем сумму всех абсолютных частот (с помощью функции СУММ). Сделаем дополнительный столбец «Относительная частота». В первую ячейку введем формулу:

Способ второй. Вернемся к таблице с исходными данными. Вычислим интервалы карманов. Сначала найдем максимальное значение в диапазоне температур и минимальное.

Чтобы найти интервал карманов, нужно разность максимального и минимального значений массива разделить на количество интервалов. Получим «ширину кармана».

Представим интервалы карманов в виде столбца значений. Сначала ширину кармана прибавляем к минимальному значению массива данных. В следующей ячейке – к полученной сумме. И так далее, пока не дойдем до максимального значения.

Для определения частоты делаем столбец рядом с интервалами карманов. Вводим функцию массива:

Вычислим относительные частоты (как в предыдущем способе).

Построим столбчатую диаграмму распределения осадков в Excel с помощью стандартного инструмента «Диаграммы».

Частота распределения заданных значений:

Круговые диаграммы для иллюстрации распределения

С помощью круговой диаграммы можно иллюстрировать данные, которые находятся в одном столбце или одной строке. Сегмент круга – это доля каждого элемента массива в сумме всех элементов.

Читать еще:  Функция истина ложь в excel как сделать

С помощью любой круговой диаграммы можно показать распределение в том случае, если

  • имеется только один ряд данных;
  • все значения положительные;
  • практически все значения выше нуля;
  • не более семи категорий;
  • каждая категория соответствует сегменту круга.

На основании имеющихся данных о количестве осадков построим круговую диаграмму.

Доля «каждого месяца» в общем количестве осадков за год:

Круговая диаграмма распределения осадков по сезонам года лучше смотрится, если данных меньше. Найдем среднее количество осадков в каждом сезоне, используя функцию СРЗНАЧ. На основании полученных данных построим диаграмму:

Получили количество выпавших осадков в процентном выражении по сезонам.

LiveInternetLiveInternet

Метки

Музыка

Конвертер видеоссылок

Подписка по e-mail

Поиск по дневнику

Интересы

Постоянные читатели

Сообщества

Трансляции

Статистика

Построение гистограмм распределения в Excel

В связи с написанием диплома тема подсчёта статистики для меня крайне актуальна, посему делюсь найденной крайне полезной стаейкой по построению гистограмм распределения. Точнее частью этой статьи с наипростейшим алгоритмом постороения этих гистограмм Excel. Лично я строю этим способом гистограммы распределения значений показателей психологических тестов, ну а там уж каждому по потребностям, распределение чего надо посмотреть.

В современном мире к статистике проявляется большой интерес, поскольку это отличный инструмент для анализа и принятия решений, а также это отличное средство для поиска причин нарушений процесса и их устранения. Статистический анализ применим во многих сферах, где существуют большие массивы данных: естественно, в первую очередь я скажу, что металлургии, а также в экономике, биологии, политике, социологии и. много где еще. Статья эта будет, как несложно догадаться по ее названию, про использование некоторых средств статистического анализа, а именно — гистограммам.
Ну, поехали.

Статистический анализ в Excel можно осуществлять двумя способами:
• С помощью функций
• С помощью средств надстройки «Пакет анализа». Ее, как правило, еще необходимо установить.

Чтобы установить пакет анализа в Excel, выберите вкладку «Файл» (а в Excel 2007 это круглая цветная кнопка слева сверху), далее — «Параметры», затем выберите раздел «Надстройки». Нажмите «Перейти» и поставьте галочку напротив «Пакет анализа».

А теперь — к построению гистограмм распределения по частоте и их анализу.

Речь пойдет именно о частотных гистограммах, где каждый столбец соответствует частоте появления* значения в пределах границ интервалов. Например, мы хотим посмотреть, как у нас выглядит распределение значения предела текучести стали S355J2 в прокате толщиной 20 мм за несколько месяцев. В общем, хотим посмотреть, похоже ли наше распределение на нормальное (а оно должно быть таким).

*Примечание: для металловедческих целей типа оценки размера зерна или оценки объемной доли частиц этот вид гистограмм не пойдет, т.к. там высота столбика соответствует не частоте появления частиц определенного размера, а доле объема (а в плоскости шлифа — площади), которую эти частицы занимают.

График нормального распределения выглядит следующим образом:

График функции Гаусса

Мы знаем, что реально такой график может быть получен только при бесконечно большом количестве измерений. Реально же для конечного числа измерений строят гистограмму, которая внешне похожа на график нормального распределения и при увеличении количества измерений приближается к графику нормального распределения (распределения Гаусса).

Построение гистограмм с помощью программ типа Excel является очень быстрым способом проверки стабильности работы оборудования и добросовестности коллектива: если получим «кривую» гистограмму, значит, либо прибор не исправен или мы данные неверно собрали, либо кто-то где-то преднамеренно мухлюет или же просто неверно использует оборудование.

А теперь — построение гистограмм!

Способ 1-ый. Халявный.


  1. Идем во вкладку «Анализ данных» и выбираем «Гистограмма».
  2. Выбираем входной интервал.
  3. Здесь же предлагается задать интервал карманов, т.е. те диапазоны, в пределах которых будут лежать наши значения. Чем больше значений в интервале — тем выше столбик гистограммы. Если мы оставим поле «Интервалы карманов» пустым, то программа вычислит границы интервалов за нас.
  4. Если хотим сразу же вывести график,то ставим галочку напротив «Вывод графика».
  5. Нажимаем «ОК».
  6. Вот, вроде бы, и все: гистограмма готова. Теперь нужно сделать так, чтобы по вертикальной оси отображалась не абсолютная частота, а относительная.
  7. Под появившейся таблицей со столбцами «Карман» и «Частота» под столбцом «Частота» введем формулу «=СУММ» и сложим все абсолютные частоты.
  8. К появившейся таблице со столбцами «Карман» и «Частота» добавим еще один столбец и назовем его «Относительная частота».
  9. Во всех ячейках нового столбца введем формулу, которая будет рассчитывать относительную частоту: 100 умножить на абсолютную частоту (ячейка из столбца «частота») и разделить на сумму, которую мы вычислил в п. 7.

Нормальное распределение (Гаусса) в Excel

В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.

Нормальное распределение в статистике

История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию биномиального распределения еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая. У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

Формула состоит из двух математических констант:

Читать еще:  Как сделать формулу в excel прибавить проценты?

π – число пи 3,142;

е – основание натурального логарифма 2,718;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);

ну и сама переменная x, для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии (σ 2 ). Кратко обозначается N(m, σ 2 ) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:


Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

P(a ≤ X 0 =1 и остается рассчитать только соотношение 1 на корень из 2 пи.

Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех сигм для нормального распределения.

Функция стандартного нормального распределения позволяет рассчитывать вероятности.

Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1, т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы.

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец , т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен).

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z), т.е. плотность для 1 тождественна плотности для -1, что отчетливо видно на рисунке.

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z.

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения.

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

Это факт показан на картинке:

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z). Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z), то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

Для наглядности можно взглянуть на рисунок.

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z.

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z: 1,64, 1,96 и 3.

Как понять смысл этих чисел? Начнем с z=1,64, для которого табличное значение составляет 0,4495. Проще всего пояснить смысл на рисунке.

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от до 1,64, равна 0,4495. При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64, т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для проверки статистических гипотез и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Еще одно интересное и часто используемое табличное значение соответствует z=3, оно равно по нашей таблице 0,4986. Умножим на 2 и получим 0,997. Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Нормальное распределение в Excel

В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.

Функция НОРМ.СТ.РАСП

Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ( z ) или вероятности Φ(z) по нормированным данным (z).

z – значение стандартизованной переменной

интегральная – если 0, то рассчитывается плотность ϕ( z ) , если 1 – значение функции Ф(z), т.е. вероятность P(Z

Ссылка на основную публикацию
Adblock
detector